11 research outputs found

    Physiology-based model of multi-source auditory processing

    Full text link
    Our auditory systems are evolved to process a myriad of acoustic environments. In complex listening scenarios, we can tune our attention to one sound source (e.g., a conversation partner), while monitoring the entire acoustic space for cues we might be interested in (e.g., our names being called, or the fire alarm going off). While normal hearing listeners handle complex listening scenarios remarkably well, hearing-impaired listeners experience difficulty even when wearing hearing-assist devices. This thesis presents both theoretical work in understanding the neural mechanisms behind this process, as well as the application of neural models to segregate mixed sources and potentially help the hearing impaired population. On the theoretical side, auditory spatial processing has been studied primarily up to the midbrain region, and studies have shown how individual neurons can localize sounds using spatial cues. Yet, how higher brain regions such as the cortex use this information to process multiple sounds in competition is not clear. This thesis demonstrates a physiology-based spiking neural network model, which provides a mechanism illustrating how the auditory cortex may organize up-stream spatial information when there are multiple competing sound sources in space. Based on this model, an engineering solution to help hearing-impaired listeners segregate mixed auditory inputs is proposed. Using the neural model to perform sound-segregation in the neural domain, the neural outputs (representing the source of interest) are reconstructed back to the acoustic domain using a novel stimulus reconstruction method.2017-09-22T00:00:00

    Cortical transformation of spatial processing for solving the cocktail party problem: a computational model(1,2,3).

    Get PDF
    In multisource, "cocktail party" sound environments, human and animal auditory systems can use spatial cues to effectively separate and follow one source of sound over competing sources. While mechanisms to extract spatial cues such as interaural time differences (ITDs) are well understood in precortical areas, how such information is reused and transformed in higher cortical regions to represent segregated sound sources is not clear. We present a computational model describing a hypothesized neural network that spans spatial cue detection areas and the cortex. This network is based on recent physiological findings that cortical neurons selectively encode target stimuli in the presence of competing maskers based on source locations (Maddox et al., 2012). We demonstrate that key features of cortical responses can be generated by the model network, which exploits spatial interactions between inputs via lateral inhibition, enabling the spatial separation of target and interfering sources while allowing monitoring of a broader acoustic space when there is no competition. We present the model network along with testable experimental paradigms as a starting point for understanding the transformation and organization of spatial information from midbrain to cortex. This network is then extended to suggest engineering solutions that may be useful for hearing-assistive devices in solving the cocktail party problem.R01 DC000100 - NIDCD NIH HHSPublished versio

    A physiologically inspired model for solving the cocktail party problem.

    Get PDF
    At a cocktail party, we can broadly monitor the entire acoustic scene to detect important cues (e.g., our names being called, or the fire alarm going off), or selectively listen to a target sound source (e.g., a conversation partner). It has recently been observed that individual neurons in the avian field L (analog to the mammalian auditory cortex) can display broad spatial tuning to single targets and selective tuning to a target embedded in spatially distributed sound mixtures. Here, we describe a model inspired by these experimental observations and apply it to process mixtures of human speech sentences. This processing is realized in the neural spiking domain. It converts binaural acoustic inputs into cortical spike trains using a multi-stage model composed of a cochlear filter-bank, a midbrain spatial-localization network, and a cortical network. The output spike trains of the cortical network are then converted back into an acoustic waveform, using a stimulus reconstruction technique. The intelligibility of the reconstructed output is quantified using an objective measure of speech intelligibility. We apply the algorithm to single and multi-talker speech to demonstrate that the physiologically inspired algorithm is able to achieve intelligible reconstruction of an "attended" target sentence embedded in two other non-attended masker sentences. The algorithm is also robust to masker level and displays performance trends comparable to humans. The ideas from this work may help improve the performance of hearing assistive devices (e.g., hearing aids and cochlear implants), speech-recognition technology, and computational algorithms for processing natural scenes cluttered with spatially distributed acoustic objects.R01 DC000100 - NIDCD NIH HHSPublished versio

    A Modified Stein Variational Inference Algorithm with Bayesian and Gradient Descent Techniques

    No full text
    This paper introduces a novel variational inference (VI) method with Bayesian and gradient descent techniques. To facilitate the approximation of the posterior distributions for the parameters of the models, the Stein method has been used in Bayesian variational inference algorithms in recent years. Unfortunately, previous methods fail to either explicitly describe the influence of its history in the tracing of particles (Q(x) in this paper) in the approximation, which is important information in the search for particles. In our paper, Q(x) is considered in design of the operator Bp, but the chance of jumping out of the local optimum may be increased, especially in the case of complex distribution. To address the existing issues, a modified Stein variational inference algorithm is proposed, which can make the gradient descent of Kullback–Leibler (KL) divergence more random. In our method, a group of particles are used to approximate target distribution by minimizing the KL divergence, which changes according to the newly defined kernelized Stein discrepancy. Furthermore, the usefulness of the suggested technique is demonstrated by using four data sets. Bayesian logistic regression is considered for classification. Statistical studies such as parameter estimate classification accuracy, F1, NRMSE, and others are used to validate the algorithm’s performance

    A Modified Stein Variational Inference Algorithm with Bayesian and Gradient Descent Techniques

    No full text
    This paper introduces a novel variational inference (VI) method with Bayesian and gradient descent techniques. To facilitate the approximation of the posterior distributions for the parameters of the models, the Stein method has been used in Bayesian variational inference algorithms in recent years. Unfortunately, previous methods fail to either explicitly describe the influence of its history in the tracing of particles (Q(x) in this paper) in the approximation, which is important information in the search for particles. In our paper, Q(x) is considered in design of the operator Bp, but the chance of jumping out of the local optimum may be increased, especially in the case of complex distribution. To address the existing issues, a modified Stein variational inference algorithm is proposed, which can make the gradient descent of Kullback–Leibler (KL) divergence more random. In our method, a group of particles are used to approximate target distribution by minimizing the KL divergence, which changes according to the newly defined kernelized Stein discrepancy. Furthermore, the usefulness of the suggested technique is demonstrated by using four data sets. Bayesian logistic regression is considered for classification. Statistical studies such as parameter estimate classification accuracy, F1, NRMSE, and others are used to validate the algorithm’s performance

    Early prediction of hemodynamic interventions in the intensive care unit using machine learning

    No full text
    Abstract Background Timely recognition of hemodynamic instability in critically ill patients enables increased vigilance and early treatment opportunities. We develop the Hemodynamic Stability Index (HSI), which highlights situational awareness of possible hemodynamic instability occurring at the bedside and to prompt assessment for potential hemodynamic interventions. Methods We used an ensemble of decision trees to obtain a real-time risk score that predicts the initiation of hemodynamic interventions an hour into the future. We developed the model using the eICU Research Institute (eRI) database, based on adult ICU admissions from 2012 to 2016. A total of 208,375 ICU stays met the inclusion criteria, with 32,896 patients (prevalence = 18%) experiencing at least one instability event where they received one of the interventions during their stay. Predictors included vital signs, laboratory measurements, and ventilation settings. Results HSI showed significantly better performance compared to single parameters like systolic blood pressure and shock index (heart rate/systolic blood pressure) and showed good generalization across patient subgroups. HSI AUC was 0.82 and predicted 52% of all hemodynamic interventions with a lead time of 1-h with a specificity of 92%. In addition to predicting future hemodynamic interventions, our model provides confidence intervals and a ranked list of clinical features that contribute to each prediction. Importantly, HSI can use a sparse set of physiologic variables and abstains from making a prediction when the confidence is below an acceptable threshold. Conclusions The HSI algorithm provides a single score that summarizes hemodynamic status in real time using multiple physiologic parameters in patient monitors and electronic medical records (EMR). Importantly, HSI is designed for real-world deployment, demonstrating generalizability, strong performance under different data availability conditions, and providing model explanation in the form of feature importance and prediction confidence
    corecore